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[1] Accurate prediction of snowpack status is important for a range of environmental
applications, yet model estimates are typically poor and in situ measurement coverage is
inadequate. Moreover, remote sensing estimates are spatially and temporally limited due
to complicating effects, including distance to open water, presence of wet snow, and
presence of thick snow. However, through assimilation of remote sensing estimates into a
land surface model, it is possible to capitalize on the strengths of both approaches. In order
to achieve this, reliable estimates of the uncertainty in both remotely sensed and model
simulated snow water equivalent (SWE) estimates are critical. For practical application,
the remotely sensed SWE retrieval error is prescribed with a spatially constant but monthly
varying value, with data omitted for (1) locations closer than 200 km to significant open
water, (2) times and locations with model-predicted presence of liquid water in the
snowpack, and (3) model SWE estimates greater than 100 mm. The model error is
estimated using standard error propagation with a calibrated spatially and temporally
constant model error contribution. A series of tests have been performed to assess the
assimilation algorithm performance. Multiyear model simulations with and without
remotely sensed SWE assimilation are presented and evaluated with in situ SWE
observations. The SWE estimates from assimilation were found to be superior to both the
model simulation and remotely sensed estimates alone, except when model SWE estimates
rapidly and erroneously crossed the 100-mm SWE cutoff early in the snow season.
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1. Introduction

[2] Previous modeling and observational studies have
demonstrated that snow is an important climatic driver
through the surface albedo’s role in energy and water
budgets [e.g., Yeh et al., 1983; Namias, 1985; Barnett
et al., 1989; Yang et al., 1999, 2001; Cohen and Entekhabi,
1999]. Models have an advantage over in situ observations
in such climatic studies as they provide global estimates of
the spatial and temporal variation in snowpack conditions,
while in situ observations are limited in both space and
time. Moreover, models are able to quantitatively describe
the relationship between snowpack status and water and

energy balance, enabling the climate system feedback to be
fully explored. However, models are also limited by a
number of factors. For example, successful snow evolution

prediction is challenging due to immature knowledge of
snow evolution physics, simplifications in model paramete-
rizations, high spatial and temporal variability of snow
cover, and errors in the model forcing data [e.g., Lynch-
Stieglitz, 1994; Rodell et al., 2004].
[3] Space-borne passive microwave sensors provide an

alternate capability to monitor global-scale snow evolution,
yielding 1- to 3-day repeat snow water equivalent (SWE)
measurements at approximately 25- to 50-km resolution.
Such sensors include the scanning multichannel microwave
radiometer (SMMR), the special sensor microwave imager
(SSM/I), and the advanced microwave scanning radiometer
for the Earth (AMSR-E) observing system. Many investi-
gators have carefully evaluated the accuracy of remotely
sensed SWE, suggesting good prairie region performance but
poor boreal forest and high latitude tundra region perfor-
mance [e.g., Robinson et al., 1993; Tait and Armstrong,
1996]. To overcome these limitations, Foster et al. [2005]
derived an alternate algorithm that made systematic error
adjustments based on environmental factors including forest
cover and snowmorphology (i.e., crystal size as a function of
location and time of year). While this yielded an improve-
ment in SWE estimates, the SWE estimates were affected by
signal saturation above a SWE of approximately 100 mm,
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mixed pixel contamination for regions within 200 km of
large, open water bodies, and liquid water in the snowpack
for monthly air temperatures above�2�C [Dong et al., 2005].
Although this limits the use of remotely sensed SWE esti-
mates to inland locations for times of moderate snowpack
amount, it is at these times and locations that the snowpack is
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typically the most dynamic and model estimates are the
poorest [e.g., Slater et al., 2001].
[4] As both model predictions and remotely sensed esti-

mates are characterized by different uncertainties at different
times and locations, the most accurate snowpack status
estimate results from the assimilation of remotely sensed
estimates into a land surface model, with correct observa-
tion and model error specifications. The SWE estimation
improvement using data assimilation can be verified using
nonassimilated in situ data. In order to attain this optimal
snowpack state estimate, it is essential that the assimilation
scheme account for the relative uncertainty of both model
predictions and observations. For example, direct replace-
ment of the modeled snow states with observations by
assuming that the observations are without any error can
often yield degraded model predictions in certain situations
[e.g., Liston et al., 1999; Rodell and Houser, 2004].
Moreover, direct replacement of SWE has only a minimal
impact on errors of correlated snow state estimates, such as
snowpack depth and temperature.
[5] Several recent studies have applied the Kalman filter

to the assimilation of snow cover and snow water equiv-
alent in land surface and hydrological models, and their
synthetic experiments showed improved streamflow and
SWE simulation accuracy [Sun et al., 2004; Andreadis
and Lettenmaier, 2006; Clark et al., 2006; Slater and
Clark, 2006]. An advanced assimilation system has recently
been developed to perform SWE assimilation with a one-
dimensional extended Kalman filter (EKF) by Sun et al.
[2004]. Their results from a series of identical-twin experi-
ments have clearly demonstrated that poor initial condition

effects can be removed, and runoff and atmospheric flux
predictions improved in the absence of significant model
and/or observation error [Sun et al., 2004]. As significant
model and remotely sensed SWE errors often exist in
reality, assimilation of satellite-derived SWE and verifica-
tion with actual in situ observations are challenging.

Figure 1. Spatial distribution of all half-degree by half-degree grid cells including one to four in situ
SWE stations (open squares) and five or more in situ stations (solid squares), with the background colors
showing snow classification according to Sturm et al. [1995]. The numbers 1 to 4 indicate selected pixels
used in subsequent analysis.
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6. Conclusions

[32] Spatially complete and temporally continuous uncer-
tainty maps for both remotely sensed and land surface
model SWE estimates have been generated and evaluated.
The remotely sensed SWE retrieval uncertainty is pres-
cribed by a spatially constant monthly varying value, with
data omitted under three considerations: (1) locations closer
than 200 km to significant open water, (2) presence of liquid
water in the snowpack, and (3) model SWE estimates
greater than 100 mm. Model SWE uncertainty has been
calibrated by tuning a spatially and temporally constant
model error term used in the error propagation equations to
the observed model error.
[33] A series of numerical experiments have demon-

strated that assimilation of remotely sensed SWE estimates
results in improved SWE estimates when compared to in
situ measurements. However, when poor-quality observa-
tions are assimilated or the model simulation transitions are
quickly beyond the 100-mm SWE cutoff, the assimilation
algorithm is no longer able to improve the snowpack
simulation. Comparison between the open-loop and assi-
milation simulations shows that runoff and upward short
and long wave radiation are also modified through assimi-
lation of remotely sensed SWE.




